Magnetic damping of a carbon nanotube nano-electromechanical resonator
نویسندگان
چکیده
منابع مشابه
Magnetic damping of a carbon nanotube nano-electromechanical resonator
A suspended, doubly clamped single-wall carbon nanotube is characterized at cryogenic temperatures. We observe specific switching effects in dc-current spectroscopy of the embedded quantum dot. These have been identified previously as nano-electromechanical self-excitation of the system, where positive feedback from single-electron tunneling drives mechanical motion. A magnetic field suppresses...
متن کاملNegative frequency tuning of a carbon nanotube nano- electromechanical resonator under tension
A suspended, doubly clamped single wall carbon nanotube is characterized as driven nano-electromechanical resonator at cryogenic temperatures. Electronically, the carbon nanotube displays small bandgap behaviour with Coulomb blockade oscillations in electron conduction and transparent contacts in hole conduction. We observe the driven mechanical resonance in dc-transport, including multiple hig...
متن کاملNano-electromechanical Devices Robust Carbon-Nanotube-Based Nano-electromechanical Devices: Understanding and Eliminating Prevalent Failure Modes Using Alternative Electrode Materials
The International Technology Roadmap for Semiconductors (ITRS [ 1 ] ) identifi es emerging technologies with the potential to sustain Moore’s Law. A necessary succession from planar CMOS (complementary metal-oxide semiconductors) to nonplanar/dual-gate CMOS, and ultimately to novel architectures such as carbon nanotube (CNT)-based nano-electromechanical systems (NEMS) is envisioned. The ITRS al...
متن کاملMechanical detection of carbon nanotube resonator vibrations.
Bending-mode vibrations of carbon nanotube resonators were mechanically detected in air at atmospheric pressure by means of a novel scanning force microscopy method. The fundamental and higher order bending eigenmodes were imaged at up to 3.1 GHz with subnanometer resolution in vibration amplitude. The resonance frequency and the eigenmode shape of multiwall nanotubes are consistent with the el...
متن کاملUltralow-Power Adaptive System Architecture Using Complementary Nano- Electromechanical Carbon Nanotube Switches
As an alternative to conventional CMOS devices, we propose a new family of devices called “Complementary Nano Electro-Mechanical Switches” (CNEMS) using carbon nanotubes as active switching/latching elements. The basic structure of these devices consists of three co-planar carbon nanotubes arranged so that the central nanotube can touch the two side carbon nanotubes upon application of a voltag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2012
ISSN: 1367-2630
DOI: 10.1088/1367-2630/14/8/083024